Step |
Hyp |
Ref |
Expression |
1 |
|
shslub.1 |
|- A e. SH |
2 |
|
shslub.2 |
|- B e. SH |
3 |
|
shslub.3 |
|- C e. SH |
4 |
1 3 2
|
shlessi |
|- ( A C_ C -> ( A +H B ) C_ ( C +H B ) ) |
5 |
3 2
|
shscomi |
|- ( C +H B ) = ( B +H C ) |
6 |
4 5
|
sseqtrdi |
|- ( A C_ C -> ( A +H B ) C_ ( B +H C ) ) |
7 |
2 3 3
|
shlessi |
|- ( B C_ C -> ( B +H C ) C_ ( C +H C ) ) |
8 |
3
|
shsidmi |
|- ( C +H C ) = C |
9 |
7 8
|
sseqtrdi |
|- ( B C_ C -> ( B +H C ) C_ C ) |
10 |
6 9
|
sylan9ss |
|- ( ( A C_ C /\ B C_ C ) -> ( A +H B ) C_ C ) |
11 |
1 2
|
shsub1i |
|- A C_ ( A +H B ) |
12 |
|
sstr |
|- ( ( A C_ ( A +H B ) /\ ( A +H B ) C_ C ) -> A C_ C ) |
13 |
11 12
|
mpan |
|- ( ( A +H B ) C_ C -> A C_ C ) |
14 |
2 1
|
shsub2i |
|- B C_ ( A +H B ) |
15 |
|
sstr |
|- ( ( B C_ ( A +H B ) /\ ( A +H B ) C_ C ) -> B C_ C ) |
16 |
14 15
|
mpan |
|- ( ( A +H B ) C_ C -> B C_ C ) |
17 |
13 16
|
jca |
|- ( ( A +H B ) C_ C -> ( A C_ C /\ B C_ C ) ) |
18 |
10 17
|
impbii |
|- ( ( A C_ C /\ B C_ C ) <-> ( A +H B ) C_ C ) |