| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shslub.1 |  |-  A e. SH | 
						
							| 2 |  | shslub.2 |  |-  B e. SH | 
						
							| 3 |  | shslub.3 |  |-  C e. SH | 
						
							| 4 | 1 3 2 | shlessi |  |-  ( A C_ C -> ( A +H B ) C_ ( C +H B ) ) | 
						
							| 5 | 3 2 | shscomi |  |-  ( C +H B ) = ( B +H C ) | 
						
							| 6 | 4 5 | sseqtrdi |  |-  ( A C_ C -> ( A +H B ) C_ ( B +H C ) ) | 
						
							| 7 | 2 3 3 | shlessi |  |-  ( B C_ C -> ( B +H C ) C_ ( C +H C ) ) | 
						
							| 8 | 3 | shsidmi |  |-  ( C +H C ) = C | 
						
							| 9 | 7 8 | sseqtrdi |  |-  ( B C_ C -> ( B +H C ) C_ C ) | 
						
							| 10 | 6 9 | sylan9ss |  |-  ( ( A C_ C /\ B C_ C ) -> ( A +H B ) C_ C ) | 
						
							| 11 | 1 2 | shsub1i |  |-  A C_ ( A +H B ) | 
						
							| 12 |  | sstr |  |-  ( ( A C_ ( A +H B ) /\ ( A +H B ) C_ C ) -> A C_ C ) | 
						
							| 13 | 11 12 | mpan |  |-  ( ( A +H B ) C_ C -> A C_ C ) | 
						
							| 14 | 2 1 | shsub2i |  |-  B C_ ( A +H B ) | 
						
							| 15 |  | sstr |  |-  ( ( B C_ ( A +H B ) /\ ( A +H B ) C_ C ) -> B C_ C ) | 
						
							| 16 | 14 15 | mpan |  |-  ( ( A +H B ) C_ C -> B C_ C ) | 
						
							| 17 | 13 16 | jca |  |-  ( ( A +H B ) C_ C -> ( A C_ C /\ B C_ C ) ) | 
						
							| 18 | 10 17 | impbii |  |-  ( ( A C_ C /\ B C_ C ) <-> ( A +H B ) C_ C ) |