Description: A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shss | |- ( H e. SH -> H C_ ~H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh | |- ( H e. SH <-> ( ( H C_ ~H /\ 0h e. H ) /\ ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) ) |
|
2 | 1 | simplbi | |- ( H e. SH -> ( H C_ ~H /\ 0h e. H ) ) |
3 | 2 | simpld | |- ( H e. SH -> H C_ ~H ) |