Description: Subspaces are subsets of Hilbert space. (Contributed by NM, 24-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsspwh | |- SH C_ ~P ~H | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pwuni | |- SH C_ ~P U. SH | |
| 2 | helsh | |- ~H e. SH | |
| 3 | shss | |- ( x e. SH -> x C_ ~H ) | |
| 4 | 3 | rgen | |- A. x e. SH x C_ ~H | 
| 5 | ssunieq | |- ( ( ~H e. SH /\ A. x e. SH x C_ ~H ) -> ~H = U. SH ) | |
| 6 | 2 4 5 | mp2an | |- ~H = U. SH | 
| 7 | 6 | pweqi | |- ~P ~H = ~P U. SH | 
| 8 | 1 7 | sseqtrri | |- SH C_ ~P ~H |