Metamath Proof Explorer


Theorem shsss

Description: The subspace sum is a subset of Hilbert space. (Contributed by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion shsss
|- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) C_ ~H )

Proof

Step Hyp Ref Expression
1 shsval
 |-  ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( +h " ( A X. B ) ) )
2 imassrn
 |-  ( +h " ( A X. B ) ) C_ ran +h
3 ax-hfvadd
 |-  +h : ( ~H X. ~H ) --> ~H
4 frn
 |-  ( +h : ( ~H X. ~H ) --> ~H -> ran +h C_ ~H )
5 3 4 ax-mp
 |-  ran +h C_ ~H
6 2 5 sstri
 |-  ( +h " ( A X. B ) ) C_ ~H
7 1 6 eqsstrdi
 |-  ( ( A e. SH /\ B e. SH ) -> ( A +H B ) C_ ~H )