Description: The subspace sum is a subset of Hilbert space. (Contributed by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shsss | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) C_ ~H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsval | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( +h " ( A X. B ) ) ) |
|
2 | imassrn | |- ( +h " ( A X. B ) ) C_ ran +h |
|
3 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
4 | frn | |- ( +h : ( ~H X. ~H ) --> ~H -> ran +h C_ ~H ) |
|
5 | 3 4 | ax-mp | |- ran +h C_ ~H |
6 | 2 5 | sstri | |- ( +h " ( A X. B ) ) C_ ~H |
7 | 1 6 | eqsstrdi | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) C_ ~H ) |