Metamath Proof Explorer


Theorem shsub1i

Description: Subspace sum is an upper bound of its arguments. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1
|- A e. SH
shincl.2
|- B e. SH
Assertion shsub1i
|- A C_ ( A +H B )

Proof

Step Hyp Ref Expression
1 shincl.1
 |-  A e. SH
2 shincl.2
 |-  B e. SH
3 1 2 shsel1i
 |-  ( x e. A -> x e. ( A +H B ) )
4 3 ssriv
 |-  A C_ ( A +H B )