Description: Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsub2 | |- ( ( A e. SH /\ B e. SH ) -> A C_ ( B +H A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | shsub1 | |- ( ( A e. SH /\ B e. SH ) -> A C_ ( A +H B ) ) | |
| 2 | shscom | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( B +H A ) ) | |
| 3 | 1 2 | sseqtrd | |- ( ( A e. SH /\ B e. SH ) -> A C_ ( B +H A ) ) |