Metamath Proof Explorer


Theorem shsub2i

Description: Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1
|- A e. SH
shincl.2
|- B e. SH
Assertion shsub2i
|- A C_ ( B +H A )

Proof

Step Hyp Ref Expression
1 shincl.1
 |-  A e. SH
2 shincl.2
 |-  B e. SH
3 2 1 shsel2i
 |-  ( x e. A -> x e. ( B +H A ) )
4 3 ssriv
 |-  A C_ ( B +H A )