Description: Subspace sum is an upper bound of its arguments. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shincl.1 | |- A e. SH |
|
shincl.2 | |- B e. SH |
||
Assertion | shsub2i | |- A C_ ( B +H A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | |- A e. SH |
|
2 | shincl.2 | |- B e. SH |
|
3 | 2 1 | shsel2i | |- ( x e. A -> x e. ( B +H A ) ) |
4 | 3 | ssriv | |- A C_ ( B +H A ) |