Metamath Proof Explorer


Theorem shsubcl

Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion shsubcl
|- ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) e. H )

Proof

Step Hyp Ref Expression
1 shss
 |-  ( H e. SH -> H C_ ~H )
2 1 sseld
 |-  ( H e. SH -> ( A e. H -> A e. ~H ) )
3 1 sseld
 |-  ( H e. SH -> ( B e. H -> B e. ~H ) )
4 2 3 anim12d
 |-  ( H e. SH -> ( ( A e. H /\ B e. H ) -> ( A e. ~H /\ B e. ~H ) ) )
5 4 3impib
 |-  ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A e. ~H /\ B e. ~H ) )
6 hvsubval
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) )
7 5 6 syl
 |-  ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) )
8 neg1cn
 |-  -u 1 e. CC
9 shmulcl
 |-  ( ( H e. SH /\ -u 1 e. CC /\ B e. H ) -> ( -u 1 .h B ) e. H )
10 8 9 mp3an2
 |-  ( ( H e. SH /\ B e. H ) -> ( -u 1 .h B ) e. H )
11 10 3adant2
 |-  ( ( H e. SH /\ A e. H /\ B e. H ) -> ( -u 1 .h B ) e. H )
12 shaddcl
 |-  ( ( H e. SH /\ A e. H /\ ( -u 1 .h B ) e. H ) -> ( A +h ( -u 1 .h B ) ) e. H )
13 11 12 syld3an3
 |-  ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A +h ( -u 1 .h B ) ) e. H )
14 7 13 eqeltrd
 |-  ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) e. H )