Description: Closure of the subspace supremum of set of subsets of Hilbert space. (Contributed by NM, 26-Nov-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shsupcl | |- ( A C_ ~P ~H -> ( span ` U. A ) e. SH ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss | |- ( A C_ ~P ~H -> U. A C_ U. ~P ~H ) |
|
2 | unipw | |- U. ~P ~H = ~H |
|
3 | 1 2 | sseqtrdi | |- ( A C_ ~P ~H -> U. A C_ ~H ) |
4 | spancl | |- ( U. A C_ ~H -> ( span ` U. A ) e. SH ) |
|
5 | 3 4 | syl | |- ( A C_ ~P ~H -> ( span ` U. A ) e. SH ) |