Description: The union of a set of subspaces is smaller than its supremum. (Contributed by NM, 26-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsupunss | |- ( A C_ SH -> U. A C_ ( span ` U. A ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | shsspwh | |- SH C_ ~P ~H  | 
						|
| 2 | sstr | |- ( ( A C_ SH /\ SH C_ ~P ~H ) -> A C_ ~P ~H )  | 
						|
| 3 | 1 2 | mpan2 | |- ( A C_ SH -> A C_ ~P ~H )  | 
						
| 4 | 3 | unissd | |- ( A C_ SH -> U. A C_ U. ~P ~H )  | 
						
| 5 | unipw | |- U. ~P ~H = ~H  | 
						|
| 6 | 4 5 | sseqtrdi | |- ( A C_ SH -> U. A C_ ~H )  | 
						
| 7 | spanss2 | |- ( U. A C_ ~H -> U. A C_ ( span ` U. A ) )  | 
						|
| 8 | 6 7 | syl | |- ( A C_ SH -> U. A C_ ( span ` U. A ) )  |