Description: The union of a set of subspaces is smaller than its supremum. (Contributed by NM, 26-Nov-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shsupunss | |- ( A C_ SH -> U. A C_ ( span ` U. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsspwh | |- SH C_ ~P ~H |
|
2 | sstr | |- ( ( A C_ SH /\ SH C_ ~P ~H ) -> A C_ ~P ~H ) |
|
3 | 1 2 | mpan2 | |- ( A C_ SH -> A C_ ~P ~H ) |
4 | 3 | unissd | |- ( A C_ SH -> U. A C_ U. ~P ~H ) |
5 | unipw | |- U. ~P ~H = ~H |
|
6 | 4 5 | sseqtrdi | |- ( A C_ SH -> U. A C_ ~H ) |
7 | spanss2 | |- ( U. A C_ ~H -> U. A C_ ( span ` U. A ) ) |
|
8 | 6 7 | syl | |- ( A C_ SH -> U. A C_ ( span ` U. A ) ) |