Metamath Proof Explorer


Theorem shsvai

Description: Vector sum belongs to subspace sum. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1
|- A e. SH
shincl.2
|- B e. SH
Assertion shsvai
|- ( ( C e. A /\ D e. B ) -> ( C +h D ) e. ( A +H B ) )

Proof

Step Hyp Ref Expression
1 shincl.1
 |-  A e. SH
2 shincl.2
 |-  B e. SH
3 shsva
 |-  ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> ( C +h D ) e. ( A +H B ) ) )
4 1 2 3 mp2an
 |-  ( ( C e. A /\ D e. B ) -> ( C +h D ) e. ( A +H B ) )