Metamath Proof Explorer


Theorem shsvs

Description: Vector subtraction belongs to subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion shsvs
|- ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> ( C -h D ) e. ( A +H B ) ) )

Proof

Step Hyp Ref Expression
1 shscl
 |-  ( ( A e. SH /\ B e. SH ) -> ( A +H B ) e. SH )
2 1 a1d
 |-  ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> ( A +H B ) e. SH ) )
3 shsel1
 |-  ( ( A e. SH /\ B e. SH ) -> ( C e. A -> C e. ( A +H B ) ) )
4 3 adantrd
 |-  ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> C e. ( A +H B ) ) )
5 shsel2
 |-  ( ( A e. SH /\ B e. SH ) -> ( D e. B -> D e. ( A +H B ) ) )
6 5 adantld
 |-  ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> D e. ( A +H B ) ) )
7 2 4 6 3jcad
 |-  ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> ( ( A +H B ) e. SH /\ C e. ( A +H B ) /\ D e. ( A +H B ) ) ) )
8 shsubcl
 |-  ( ( ( A +H B ) e. SH /\ C e. ( A +H B ) /\ D e. ( A +H B ) ) -> ( C -h D ) e. ( A +H B ) )
9 7 8 syl6
 |-  ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> ( C -h D ) e. ( A +H B ) ) )