Description: A subspace is a subset of its Hilbert lattice join with another. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shub2 | |- ( ( A e. SH /\ B e. SH ) -> A C_ ( B vH A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shub1 | |- ( ( A e. SH /\ B e. SH ) -> A C_ ( A vH B ) ) |
|
2 | shjcom | |- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( B vH A ) ) |
|
3 | 1 2 | sseqtrd | |- ( ( A e. SH /\ B e. SH ) -> A C_ ( B vH A ) ) |