Step |
Hyp |
Ref |
Expression |
1 |
|
shuni.1 |
|- ( ph -> H e. SH ) |
2 |
|
shuni.2 |
|- ( ph -> K e. SH ) |
3 |
|
shuni.3 |
|- ( ph -> ( H i^i K ) = 0H ) |
4 |
|
shuni.4 |
|- ( ph -> A e. H ) |
5 |
|
shuni.5 |
|- ( ph -> B e. K ) |
6 |
|
shuni.6 |
|- ( ph -> C e. H ) |
7 |
|
shuni.7 |
|- ( ph -> D e. K ) |
8 |
|
shuni.8 |
|- ( ph -> ( A +h B ) = ( C +h D ) ) |
9 |
|
shsubcl |
|- ( ( H e. SH /\ A e. H /\ C e. H ) -> ( A -h C ) e. H ) |
10 |
1 4 6 9
|
syl3anc |
|- ( ph -> ( A -h C ) e. H ) |
11 |
|
shel |
|- ( ( H e. SH /\ A e. H ) -> A e. ~H ) |
12 |
1 4 11
|
syl2anc |
|- ( ph -> A e. ~H ) |
13 |
|
shel |
|- ( ( K e. SH /\ B e. K ) -> B e. ~H ) |
14 |
2 5 13
|
syl2anc |
|- ( ph -> B e. ~H ) |
15 |
|
shel |
|- ( ( H e. SH /\ C e. H ) -> C e. ~H ) |
16 |
1 6 15
|
syl2anc |
|- ( ph -> C e. ~H ) |
17 |
|
shel |
|- ( ( K e. SH /\ D e. K ) -> D e. ~H ) |
18 |
2 7 17
|
syl2anc |
|- ( ph -> D e. ~H ) |
19 |
|
hvaddsub4 |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) = ( C +h D ) <-> ( A -h C ) = ( D -h B ) ) ) |
20 |
12 14 16 18 19
|
syl22anc |
|- ( ph -> ( ( A +h B ) = ( C +h D ) <-> ( A -h C ) = ( D -h B ) ) ) |
21 |
8 20
|
mpbid |
|- ( ph -> ( A -h C ) = ( D -h B ) ) |
22 |
|
shsubcl |
|- ( ( K e. SH /\ D e. K /\ B e. K ) -> ( D -h B ) e. K ) |
23 |
2 7 5 22
|
syl3anc |
|- ( ph -> ( D -h B ) e. K ) |
24 |
21 23
|
eqeltrd |
|- ( ph -> ( A -h C ) e. K ) |
25 |
10 24
|
elind |
|- ( ph -> ( A -h C ) e. ( H i^i K ) ) |
26 |
25 3
|
eleqtrd |
|- ( ph -> ( A -h C ) e. 0H ) |
27 |
|
elch0 |
|- ( ( A -h C ) e. 0H <-> ( A -h C ) = 0h ) |
28 |
26 27
|
sylib |
|- ( ph -> ( A -h C ) = 0h ) |
29 |
|
hvsubeq0 |
|- ( ( A e. ~H /\ C e. ~H ) -> ( ( A -h C ) = 0h <-> A = C ) ) |
30 |
12 16 29
|
syl2anc |
|- ( ph -> ( ( A -h C ) = 0h <-> A = C ) ) |
31 |
28 30
|
mpbid |
|- ( ph -> A = C ) |
32 |
21 28
|
eqtr3d |
|- ( ph -> ( D -h B ) = 0h ) |
33 |
|
hvsubeq0 |
|- ( ( D e. ~H /\ B e. ~H ) -> ( ( D -h B ) = 0h <-> D = B ) ) |
34 |
18 14 33
|
syl2anc |
|- ( ph -> ( ( D -h B ) = 0h <-> D = B ) ) |
35 |
32 34
|
mpbid |
|- ( ph -> D = B ) |
36 |
35
|
eqcomd |
|- ( ph -> B = D ) |
37 |
31 36
|
jca |
|- ( ph -> ( A = C /\ B = D ) ) |