Step |
Hyp |
Ref |
Expression |
1 |
|
sharhght.sigar |
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
2 |
|
sharhght.a |
|- ( ph -> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
3 |
|
sharhght.b |
|- ( ph -> ( D e. CC /\ ( ( A - D ) G ( B - D ) ) = 0 ) ) |
4 |
2
|
simp1d |
|- ( ph -> A e. CC ) |
5 |
2
|
simp3d |
|- ( ph -> C e. CC ) |
6 |
3
|
simpld |
|- ( ph -> D e. CC ) |
7 |
4 5 6
|
nnncan1d |
|- ( ph -> ( ( A - C ) - ( A - D ) ) = ( D - C ) ) |
8 |
7
|
oveq2d |
|- ( ph -> ( ( B - D ) G ( ( A - C ) - ( A - D ) ) ) = ( ( B - D ) G ( D - C ) ) ) |
9 |
2
|
simp2d |
|- ( ph -> B e. CC ) |
10 |
9 6
|
subcld |
|- ( ph -> ( B - D ) e. CC ) |
11 |
4 5
|
subcld |
|- ( ph -> ( A - C ) e. CC ) |
12 |
4 6
|
subcld |
|- ( ph -> ( A - D ) e. CC ) |
13 |
1
|
sigarms |
|- ( ( ( B - D ) e. CC /\ ( A - C ) e. CC /\ ( A - D ) e. CC ) -> ( ( B - D ) G ( ( A - C ) - ( A - D ) ) ) = ( ( ( B - D ) G ( A - C ) ) - ( ( B - D ) G ( A - D ) ) ) ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ph -> ( ( B - D ) G ( ( A - C ) - ( A - D ) ) ) = ( ( ( B - D ) G ( A - C ) ) - ( ( B - D ) G ( A - D ) ) ) ) |
15 |
8 14
|
eqtr3d |
|- ( ph -> ( ( B - D ) G ( D - C ) ) = ( ( ( B - D ) G ( A - C ) ) - ( ( B - D ) G ( A - D ) ) ) ) |
16 |
1
|
sigarac |
|- ( ( ( A - D ) e. CC /\ ( B - D ) e. CC ) -> ( ( A - D ) G ( B - D ) ) = -u ( ( B - D ) G ( A - D ) ) ) |
17 |
12 10 16
|
syl2anc |
|- ( ph -> ( ( A - D ) G ( B - D ) ) = -u ( ( B - D ) G ( A - D ) ) ) |
18 |
3
|
simprd |
|- ( ph -> ( ( A - D ) G ( B - D ) ) = 0 ) |
19 |
17 18
|
eqtr3d |
|- ( ph -> -u ( ( B - D ) G ( A - D ) ) = 0 ) |
20 |
19
|
negeqd |
|- ( ph -> -u -u ( ( B - D ) G ( A - D ) ) = -u 0 ) |
21 |
10 12
|
jca |
|- ( ph -> ( ( B - D ) e. CC /\ ( A - D ) e. CC ) ) |
22 |
1 21
|
sigarimcd |
|- ( ph -> ( ( B - D ) G ( A - D ) ) e. CC ) |
23 |
22
|
negnegd |
|- ( ph -> -u -u ( ( B - D ) G ( A - D ) ) = ( ( B - D ) G ( A - D ) ) ) |
24 |
|
neg0 |
|- -u 0 = 0 |
25 |
24
|
a1i |
|- ( ph -> -u 0 = 0 ) |
26 |
20 23 25
|
3eqtr3d |
|- ( ph -> ( ( B - D ) G ( A - D ) ) = 0 ) |
27 |
26
|
oveq2d |
|- ( ph -> ( ( ( B - D ) G ( A - C ) ) - ( ( B - D ) G ( A - D ) ) ) = ( ( ( B - D ) G ( A - C ) ) - 0 ) ) |
28 |
10 11
|
jca |
|- ( ph -> ( ( B - D ) e. CC /\ ( A - C ) e. CC ) ) |
29 |
1 28
|
sigarimcd |
|- ( ph -> ( ( B - D ) G ( A - C ) ) e. CC ) |
30 |
29
|
subid1d |
|- ( ph -> ( ( ( B - D ) G ( A - C ) ) - 0 ) = ( ( B - D ) G ( A - C ) ) ) |
31 |
15 27 30
|
3eqtrd |
|- ( ph -> ( ( B - D ) G ( D - C ) ) = ( ( B - D ) G ( A - C ) ) ) |
32 |
9 6 5
|
nnncan2d |
|- ( ph -> ( ( B - C ) - ( D - C ) ) = ( B - D ) ) |
33 |
32
|
oveq1d |
|- ( ph -> ( ( ( B - C ) - ( D - C ) ) G ( A - C ) ) = ( ( B - D ) G ( A - C ) ) ) |
34 |
9 5
|
subcld |
|- ( ph -> ( B - C ) e. CC ) |
35 |
6 5
|
subcld |
|- ( ph -> ( D - C ) e. CC ) |
36 |
1
|
sigarmf |
|- ( ( ( B - C ) e. CC /\ ( A - C ) e. CC /\ ( D - C ) e. CC ) -> ( ( ( B - C ) - ( D - C ) ) G ( A - C ) ) = ( ( ( B - C ) G ( A - C ) ) - ( ( D - C ) G ( A - C ) ) ) ) |
37 |
34 11 35 36
|
syl3anc |
|- ( ph -> ( ( ( B - C ) - ( D - C ) ) G ( A - C ) ) = ( ( ( B - C ) G ( A - C ) ) - ( ( D - C ) G ( A - C ) ) ) ) |
38 |
31 33 37
|
3eqtr2rd |
|- ( ph -> ( ( ( B - C ) G ( A - C ) ) - ( ( D - C ) G ( A - C ) ) ) = ( ( B - D ) G ( D - C ) ) ) |
39 |
5 6
|
subcld |
|- ( ph -> ( C - D ) e. CC ) |
40 |
|
1red |
|- ( ph -> 1 e. RR ) |
41 |
40
|
renegcld |
|- ( ph -> -u 1 e. RR ) |
42 |
1
|
sigarls |
|- ( ( ( B - D ) e. CC /\ ( C - D ) e. CC /\ -u 1 e. RR ) -> ( ( B - D ) G ( ( C - D ) x. -u 1 ) ) = ( ( ( B - D ) G ( C - D ) ) x. -u 1 ) ) |
43 |
10 39 41 42
|
syl3anc |
|- ( ph -> ( ( B - D ) G ( ( C - D ) x. -u 1 ) ) = ( ( ( B - D ) G ( C - D ) ) x. -u 1 ) ) |
44 |
39
|
mulm1d |
|- ( ph -> ( -u 1 x. ( C - D ) ) = -u ( C - D ) ) |
45 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
46 |
45
|
negcld |
|- ( ph -> -u 1 e. CC ) |
47 |
46 39
|
mulcomd |
|- ( ph -> ( -u 1 x. ( C - D ) ) = ( ( C - D ) x. -u 1 ) ) |
48 |
5 6
|
negsubdi2d |
|- ( ph -> -u ( C - D ) = ( D - C ) ) |
49 |
44 47 48
|
3eqtr3d |
|- ( ph -> ( ( C - D ) x. -u 1 ) = ( D - C ) ) |
50 |
49
|
oveq2d |
|- ( ph -> ( ( B - D ) G ( ( C - D ) x. -u 1 ) ) = ( ( B - D ) G ( D - C ) ) ) |
51 |
10 39
|
jca |
|- ( ph -> ( ( B - D ) e. CC /\ ( C - D ) e. CC ) ) |
52 |
1 51
|
sigarimcd |
|- ( ph -> ( ( B - D ) G ( C - D ) ) e. CC ) |
53 |
52
|
mulm1d |
|- ( ph -> ( -u 1 x. ( ( B - D ) G ( C - D ) ) ) = -u ( ( B - D ) G ( C - D ) ) ) |
54 |
52 46
|
mulcomd |
|- ( ph -> ( ( ( B - D ) G ( C - D ) ) x. -u 1 ) = ( -u 1 x. ( ( B - D ) G ( C - D ) ) ) ) |
55 |
1
|
sigarac |
|- ( ( ( C - D ) e. CC /\ ( B - D ) e. CC ) -> ( ( C - D ) G ( B - D ) ) = -u ( ( B - D ) G ( C - D ) ) ) |
56 |
39 10 55
|
syl2anc |
|- ( ph -> ( ( C - D ) G ( B - D ) ) = -u ( ( B - D ) G ( C - D ) ) ) |
57 |
53 54 56
|
3eqtr4d |
|- ( ph -> ( ( ( B - D ) G ( C - D ) ) x. -u 1 ) = ( ( C - D ) G ( B - D ) ) ) |
58 |
43 50 57
|
3eqtr3d |
|- ( ph -> ( ( B - D ) G ( D - C ) ) = ( ( C - D ) G ( B - D ) ) ) |
59 |
1
|
sigarperm |
|- ( ( C e. CC /\ B e. CC /\ D e. CC ) -> ( ( C - D ) G ( B - D ) ) = ( ( B - C ) G ( D - C ) ) ) |
60 |
5 9 6 59
|
syl3anc |
|- ( ph -> ( ( C - D ) G ( B - D ) ) = ( ( B - C ) G ( D - C ) ) ) |
61 |
38 58 60
|
3eqtrd |
|- ( ph -> ( ( ( B - C ) G ( A - C ) ) - ( ( D - C ) G ( A - C ) ) ) = ( ( B - C ) G ( D - C ) ) ) |