Step |
Hyp |
Ref |
Expression |
1 |
|
sigar |
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
2 |
|
sigardiv.a |
|- ( ph -> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
3 |
|
sigardiv.b |
|- ( ph -> -. C = A ) |
4 |
|
sigardiv.c |
|- ( ph -> ( ( B - A ) G ( C - A ) ) = 0 ) |
5 |
2
|
simp2d |
|- ( ph -> B e. CC ) |
6 |
2
|
simp1d |
|- ( ph -> A e. CC ) |
7 |
5 6
|
subcld |
|- ( ph -> ( B - A ) e. CC ) |
8 |
2
|
simp3d |
|- ( ph -> C e. CC ) |
9 |
8 6
|
subcld |
|- ( ph -> ( C - A ) e. CC ) |
10 |
3
|
neqned |
|- ( ph -> C =/= A ) |
11 |
8 6 10
|
subne0d |
|- ( ph -> ( C - A ) =/= 0 ) |
12 |
7 9 11
|
cjdivd |
|- ( ph -> ( * ` ( ( B - A ) / ( C - A ) ) ) = ( ( * ` ( B - A ) ) / ( * ` ( C - A ) ) ) ) |
13 |
7
|
cjcld |
|- ( ph -> ( * ` ( B - A ) ) e. CC ) |
14 |
9
|
cjcld |
|- ( ph -> ( * ` ( C - A ) ) e. CC ) |
15 |
9 11
|
cjne0d |
|- ( ph -> ( * ` ( C - A ) ) =/= 0 ) |
16 |
13 14 9 15 11
|
divcan5rd |
|- ( ph -> ( ( ( * ` ( B - A ) ) x. ( C - A ) ) / ( ( * ` ( C - A ) ) x. ( C - A ) ) ) = ( ( * ` ( B - A ) ) / ( * ` ( C - A ) ) ) ) |
17 |
13 9
|
mulcld |
|- ( ph -> ( ( * ` ( B - A ) ) x. ( C - A ) ) e. CC ) |
18 |
1
|
sigarval |
|- ( ( ( B - A ) e. CC /\ ( C - A ) e. CC ) -> ( ( B - A ) G ( C - A ) ) = ( Im ` ( ( * ` ( B - A ) ) x. ( C - A ) ) ) ) |
19 |
7 9 18
|
syl2anc |
|- ( ph -> ( ( B - A ) G ( C - A ) ) = ( Im ` ( ( * ` ( B - A ) ) x. ( C - A ) ) ) ) |
20 |
19 4
|
eqtr3d |
|- ( ph -> ( Im ` ( ( * ` ( B - A ) ) x. ( C - A ) ) ) = 0 ) |
21 |
17 20
|
reim0bd |
|- ( ph -> ( ( * ` ( B - A ) ) x. ( C - A ) ) e. RR ) |
22 |
9 14
|
mulcomd |
|- ( ph -> ( ( C - A ) x. ( * ` ( C - A ) ) ) = ( ( * ` ( C - A ) ) x. ( C - A ) ) ) |
23 |
9
|
cjmulrcld |
|- ( ph -> ( ( C - A ) x. ( * ` ( C - A ) ) ) e. RR ) |
24 |
22 23
|
eqeltrrd |
|- ( ph -> ( ( * ` ( C - A ) ) x. ( C - A ) ) e. RR ) |
25 |
14 9 15 11
|
mulne0d |
|- ( ph -> ( ( * ` ( C - A ) ) x. ( C - A ) ) =/= 0 ) |
26 |
21 24 25
|
redivcld |
|- ( ph -> ( ( ( * ` ( B - A ) ) x. ( C - A ) ) / ( ( * ` ( C - A ) ) x. ( C - A ) ) ) e. RR ) |
27 |
16 26
|
eqeltrrd |
|- ( ph -> ( ( * ` ( B - A ) ) / ( * ` ( C - A ) ) ) e. RR ) |
28 |
12 27
|
eqeltrd |
|- ( ph -> ( * ` ( ( B - A ) / ( C - A ) ) ) e. RR ) |
29 |
28
|
cjred |
|- ( ph -> ( * ` ( * ` ( ( B - A ) / ( C - A ) ) ) ) = ( * ` ( ( B - A ) / ( C - A ) ) ) ) |
30 |
7 9 11
|
divcld |
|- ( ph -> ( ( B - A ) / ( C - A ) ) e. CC ) |
31 |
30
|
cjcjd |
|- ( ph -> ( * ` ( * ` ( ( B - A ) / ( C - A ) ) ) ) = ( ( B - A ) / ( C - A ) ) ) |
32 |
29 31
|
eqtr3d |
|- ( ph -> ( * ` ( ( B - A ) / ( C - A ) ) ) = ( ( B - A ) / ( C - A ) ) ) |
33 |
32 28
|
eqeltrrd |
|- ( ph -> ( ( B - A ) / ( C - A ) ) e. RR ) |