| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sigar |  |-  G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) | 
						
							| 2 |  | sigardiv.a |  |-  ( ph -> ( A e. CC /\ B e. CC /\ C e. CC ) ) | 
						
							| 3 |  | sigardiv.b |  |-  ( ph -> -. C = A ) | 
						
							| 4 |  | sigardiv.c |  |-  ( ph -> ( ( B - A ) G ( C - A ) ) = 0 ) | 
						
							| 5 | 2 | simp2d |  |-  ( ph -> B e. CC ) | 
						
							| 6 | 2 | simp1d |  |-  ( ph -> A e. CC ) | 
						
							| 7 | 5 6 | subcld |  |-  ( ph -> ( B - A ) e. CC ) | 
						
							| 8 | 2 | simp3d |  |-  ( ph -> C e. CC ) | 
						
							| 9 | 8 6 | subcld |  |-  ( ph -> ( C - A ) e. CC ) | 
						
							| 10 | 3 | neqned |  |-  ( ph -> C =/= A ) | 
						
							| 11 | 8 6 10 | subne0d |  |-  ( ph -> ( C - A ) =/= 0 ) | 
						
							| 12 | 7 9 11 | cjdivd |  |-  ( ph -> ( * ` ( ( B - A ) / ( C - A ) ) ) = ( ( * ` ( B - A ) ) / ( * ` ( C - A ) ) ) ) | 
						
							| 13 | 7 | cjcld |  |-  ( ph -> ( * ` ( B - A ) ) e. CC ) | 
						
							| 14 | 9 | cjcld |  |-  ( ph -> ( * ` ( C - A ) ) e. CC ) | 
						
							| 15 | 9 11 | cjne0d |  |-  ( ph -> ( * ` ( C - A ) ) =/= 0 ) | 
						
							| 16 | 13 14 9 15 11 | divcan5rd |  |-  ( ph -> ( ( ( * ` ( B - A ) ) x. ( C - A ) ) / ( ( * ` ( C - A ) ) x. ( C - A ) ) ) = ( ( * ` ( B - A ) ) / ( * ` ( C - A ) ) ) ) | 
						
							| 17 | 13 9 | mulcld |  |-  ( ph -> ( ( * ` ( B - A ) ) x. ( C - A ) ) e. CC ) | 
						
							| 18 | 1 | sigarval |  |-  ( ( ( B - A ) e. CC /\ ( C - A ) e. CC ) -> ( ( B - A ) G ( C - A ) ) = ( Im ` ( ( * ` ( B - A ) ) x. ( C - A ) ) ) ) | 
						
							| 19 | 7 9 18 | syl2anc |  |-  ( ph -> ( ( B - A ) G ( C - A ) ) = ( Im ` ( ( * ` ( B - A ) ) x. ( C - A ) ) ) ) | 
						
							| 20 | 19 4 | eqtr3d |  |-  ( ph -> ( Im ` ( ( * ` ( B - A ) ) x. ( C - A ) ) ) = 0 ) | 
						
							| 21 | 17 20 | reim0bd |  |-  ( ph -> ( ( * ` ( B - A ) ) x. ( C - A ) ) e. RR ) | 
						
							| 22 | 9 14 | mulcomd |  |-  ( ph -> ( ( C - A ) x. ( * ` ( C - A ) ) ) = ( ( * ` ( C - A ) ) x. ( C - A ) ) ) | 
						
							| 23 | 9 | cjmulrcld |  |-  ( ph -> ( ( C - A ) x. ( * ` ( C - A ) ) ) e. RR ) | 
						
							| 24 | 22 23 | eqeltrrd |  |-  ( ph -> ( ( * ` ( C - A ) ) x. ( C - A ) ) e. RR ) | 
						
							| 25 | 14 9 15 11 | mulne0d |  |-  ( ph -> ( ( * ` ( C - A ) ) x. ( C - A ) ) =/= 0 ) | 
						
							| 26 | 21 24 25 | redivcld |  |-  ( ph -> ( ( ( * ` ( B - A ) ) x. ( C - A ) ) / ( ( * ` ( C - A ) ) x. ( C - A ) ) ) e. RR ) | 
						
							| 27 | 16 26 | eqeltrrd |  |-  ( ph -> ( ( * ` ( B - A ) ) / ( * ` ( C - A ) ) ) e. RR ) | 
						
							| 28 | 12 27 | eqeltrd |  |-  ( ph -> ( * ` ( ( B - A ) / ( C - A ) ) ) e. RR ) | 
						
							| 29 | 28 | cjred |  |-  ( ph -> ( * ` ( * ` ( ( B - A ) / ( C - A ) ) ) ) = ( * ` ( ( B - A ) / ( C - A ) ) ) ) | 
						
							| 30 | 7 9 11 | divcld |  |-  ( ph -> ( ( B - A ) / ( C - A ) ) e. CC ) | 
						
							| 31 | 30 | cjcjd |  |-  ( ph -> ( * ` ( * ` ( ( B - A ) / ( C - A ) ) ) ) = ( ( B - A ) / ( C - A ) ) ) | 
						
							| 32 | 29 31 | eqtr3d |  |-  ( ph -> ( * ` ( ( B - A ) / ( C - A ) ) ) = ( ( B - A ) / ( C - A ) ) ) | 
						
							| 33 | 32 28 | eqeltrrd |  |-  ( ph -> ( ( B - A ) / ( C - A ) ) e. RR ) |