| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sigar |  |-  G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) | 
						
							| 2 | 1 | sigarval |  |-  ( ( A e. CC /\ A e. CC ) -> ( A G A ) = ( Im ` ( ( * ` A ) x. A ) ) ) | 
						
							| 3 | 2 | anidms |  |-  ( A e. CC -> ( A G A ) = ( Im ` ( ( * ` A ) x. A ) ) ) | 
						
							| 4 |  | cjcl |  |-  ( A e. CC -> ( * ` A ) e. CC ) | 
						
							| 5 |  | id |  |-  ( A e. CC -> A e. CC ) | 
						
							| 6 | 4 5 | mulcomd |  |-  ( A e. CC -> ( ( * ` A ) x. A ) = ( A x. ( * ` A ) ) ) | 
						
							| 7 |  | cjmulrcl |  |-  ( A e. CC -> ( A x. ( * ` A ) ) e. RR ) | 
						
							| 8 | 6 7 | eqeltrd |  |-  ( A e. CC -> ( ( * ` A ) x. A ) e. RR ) | 
						
							| 9 | 8 | reim0d |  |-  ( A e. CC -> ( Im ` ( ( * ` A ) x. A ) ) = 0 ) | 
						
							| 10 | 3 9 | eqtrd |  |-  ( A e. CC -> ( A G A ) = 0 ) |