Step |
Hyp |
Ref |
Expression |
1 |
|
sigar |
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
2 |
|
simpl |
|- ( ( x = A /\ y = B ) -> x = A ) |
3 |
2
|
fveq2d |
|- ( ( x = A /\ y = B ) -> ( * ` x ) = ( * ` A ) ) |
4 |
|
simpr |
|- ( ( x = A /\ y = B ) -> y = B ) |
5 |
3 4
|
oveq12d |
|- ( ( x = A /\ y = B ) -> ( ( * ` x ) x. y ) = ( ( * ` A ) x. B ) ) |
6 |
5
|
fveq2d |
|- ( ( x = A /\ y = B ) -> ( Im ` ( ( * ` x ) x. y ) ) = ( Im ` ( ( * ` A ) x. B ) ) ) |
7 |
|
fvex |
|- ( Im ` ( ( * ` A ) x. B ) ) e. _V |
8 |
6 1 7
|
ovmpoa |
|- ( ( A e. CC /\ B e. CC ) -> ( A G B ) = ( Im ` ( ( * ` A ) x. B ) ) ) |