Metamath Proof Explorer


Theorem simp-11r

Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by Wolf Lammen, 24-May-2022)

Ref Expression
Assertion simp-11r
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) /\ ka ) -> ps )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( ph /\ ps ) -> ps )
2 1 ad10antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) /\ ka ) -> ps )