Metamath Proof Explorer


Theorem simp-4l

Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by Wolf Lammen, 24-May-2022)

Ref Expression
Assertion simp-4l
|- ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) -> ph )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ph -> ph )
2 1 ad4antr
 |-  ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) -> ph )