Metamath Proof Explorer


Theorem simp11

Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011)

Ref Expression
Assertion simp11
|- ( ( ( ph /\ ps /\ ch ) /\ th /\ ta ) -> ph )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( ph /\ ps /\ ch ) -> ph )
2 1 3ad2ant1
 |-  ( ( ( ph /\ ps /\ ch ) /\ th /\ ta ) -> ph )