Metamath Proof Explorer


Theorem simp12

Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011)

Ref Expression
Assertion simp12
|- ( ( ( ph /\ ps /\ ch ) /\ th /\ ta ) -> ps )

Proof

Step Hyp Ref Expression
1 simp2
 |-  ( ( ph /\ ps /\ ch ) -> ps )
2 1 3ad2ant1
 |-  ( ( ( ph /\ ps /\ ch ) /\ th /\ ta ) -> ps )