Metamath Proof Explorer


Theorem simp131

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp131
|- ( ( ( th /\ ta /\ ( ph /\ ps /\ ch ) ) /\ et /\ ze ) -> ph )

Proof

Step Hyp Ref Expression
1 simp31
 |-  ( ( th /\ ta /\ ( ph /\ ps /\ ch ) ) -> ph )
2 1 3ad2ant1
 |-  ( ( ( th /\ ta /\ ( ph /\ ps /\ ch ) ) /\ et /\ ze ) -> ph )