Metamath Proof Explorer


Theorem simp133

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp133
|- ( ( ( th /\ ta /\ ( ph /\ ps /\ ch ) ) /\ et /\ ze ) -> ch )

Proof

Step Hyp Ref Expression
1 simp33
 |-  ( ( th /\ ta /\ ( ph /\ ps /\ ch ) ) -> ch )
2 1 3ad2ant1
 |-  ( ( ( th /\ ta /\ ( ph /\ ps /\ ch ) ) /\ et /\ ze ) -> ch )