Metamath Proof Explorer


Theorem simp1ll

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp1ll
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ th /\ ta ) -> ph )

Proof

Step Hyp Ref Expression
1 simpll
 |-  ( ( ( ph /\ ps ) /\ ch ) -> ph )
2 1 3ad2ant1
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th /\ ta ) -> ph )