Metamath Proof Explorer


Theorem simp211

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp211
|- ( ( et /\ ( ( ph /\ ps /\ ch ) /\ th /\ ta ) /\ ze ) -> ph )

Proof

Step Hyp Ref Expression
1 simp11
 |-  ( ( ( ph /\ ps /\ ch ) /\ th /\ ta ) -> ph )
2 1 3ad2ant2
 |-  ( ( et /\ ( ( ph /\ ps /\ ch ) /\ th /\ ta ) /\ ze ) -> ph )