Metamath Proof Explorer


Theorem simp212

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp212
|- ( ( et /\ ( ( ph /\ ps /\ ch ) /\ th /\ ta ) /\ ze ) -> ps )

Proof

Step Hyp Ref Expression
1 simp12
 |-  ( ( ( ph /\ ps /\ ch ) /\ th /\ ta ) -> ps )
2 1 3ad2ant2
 |-  ( ( et /\ ( ( ph /\ ps /\ ch ) /\ th /\ ta ) /\ ze ) -> ps )