Metamath Proof Explorer


Theorem simp222

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp222
|- ( ( et /\ ( th /\ ( ph /\ ps /\ ch ) /\ ta ) /\ ze ) -> ps )

Proof

Step Hyp Ref Expression
1 simp22
 |-  ( ( th /\ ( ph /\ ps /\ ch ) /\ ta ) -> ps )
2 1 3ad2ant2
 |-  ( ( et /\ ( th /\ ( ph /\ ps /\ ch ) /\ ta ) /\ ze ) -> ps )