Metamath Proof Explorer


Theorem simp232

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp232
|- ( ( et /\ ( th /\ ta /\ ( ph /\ ps /\ ch ) ) /\ ze ) -> ps )

Proof

Step Hyp Ref Expression
1 simp32
 |-  ( ( th /\ ta /\ ( ph /\ ps /\ ch ) ) -> ps )
2 1 3ad2ant2
 |-  ( ( et /\ ( th /\ ta /\ ( ph /\ ps /\ ch ) ) /\ ze ) -> ps )