Metamath Proof Explorer


Theorem simp2r2

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp2r2
|- ( ( ta /\ ( th /\ ( ph /\ ps /\ ch ) ) /\ et ) -> ps )

Proof

Step Hyp Ref Expression
1 simpr2
 |-  ( ( th /\ ( ph /\ ps /\ ch ) ) -> ps )
2 1 3ad2ant2
 |-  ( ( ta /\ ( th /\ ( ph /\ ps /\ ch ) ) /\ et ) -> ps )