Metamath Proof Explorer


Theorem simp2rr

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp2rr
|- ( ( th /\ ( ch /\ ( ph /\ ps ) ) /\ ta ) -> ps )

Proof

Step Hyp Ref Expression
1 simprr
 |-  ( ( ch /\ ( ph /\ ps ) ) -> ps )
2 1 3ad2ant2
 |-  ( ( th /\ ( ch /\ ( ph /\ ps ) ) /\ ta ) -> ps )