Metamath Proof Explorer


Theorem simp322

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp322
|- ( ( et /\ ze /\ ( th /\ ( ph /\ ps /\ ch ) /\ ta ) ) -> ps )

Proof

Step Hyp Ref Expression
1 simp22
 |-  ( ( th /\ ( ph /\ ps /\ ch ) /\ ta ) -> ps )
2 1 3ad2ant3
 |-  ( ( et /\ ze /\ ( th /\ ( ph /\ ps /\ ch ) /\ ta ) ) -> ps )