Metamath Proof Explorer


Theorem simp32r

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp32r
|- ( ( ta /\ et /\ ( ch /\ ( ph /\ ps ) /\ th ) ) -> ps )

Proof

Step Hyp Ref Expression
1 simp2r
 |-  ( ( ch /\ ( ph /\ ps ) /\ th ) -> ps )
2 1 3ad2ant3
 |-  ( ( ta /\ et /\ ( ch /\ ( ph /\ ps ) /\ th ) ) -> ps )