Metamath Proof Explorer


Theorem simp333

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp333
|- ( ( et /\ ze /\ ( th /\ ta /\ ( ph /\ ps /\ ch ) ) ) -> ch )

Proof

Step Hyp Ref Expression
1 simp33
 |-  ( ( th /\ ta /\ ( ph /\ ps /\ ch ) ) -> ch )
2 1 3ad2ant3
 |-  ( ( et /\ ze /\ ( th /\ ta /\ ( ph /\ ps /\ ch ) ) ) -> ch )