Metamath Proof Explorer


Theorem simp3r3

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp3r3
|- ( ( ta /\ et /\ ( th /\ ( ph /\ ps /\ ch ) ) ) -> ch )

Proof

Step Hyp Ref Expression
1 simpr3
 |-  ( ( th /\ ( ph /\ ps /\ ch ) ) -> ch )
2 1 3ad2ant3
 |-  ( ( ta /\ et /\ ( th /\ ( ph /\ ps /\ ch ) ) ) -> ch )