Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021) (Proof shortened by Wolf Lammen, 26-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | simpl2im.1 | |- ( ph -> ( ps /\ ch ) ) |
|
simpl2im.2 | |- ( ch -> th ) |
||
Assertion | simpl2im | |- ( ph -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2im.1 | |- ( ph -> ( ps /\ ch ) ) |
|
2 | simpl2im.2 | |- ( ch -> th ) |
|
3 | 1 | simprd | |- ( ph -> ch ) |
4 | 3 2 | syl | |- ( ph -> th ) |