Metamath Proof Explorer


Theorem simpl31

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 24-Jun-2022)

Ref Expression
Assertion simpl31
|- ( ( ( th /\ ta /\ ( ph /\ ps /\ ch ) ) /\ et ) -> ph )

Proof

Step Hyp Ref Expression
1 simpl1
 |-  ( ( ( ph /\ ps /\ ch ) /\ et ) -> ph )
2 1 3ad2antl3
 |-  ( ( ( th /\ ta /\ ( ph /\ ps /\ ch ) ) /\ et ) -> ph )