Metamath Proof Explorer


Theorem simplbi2com

Description: A deduction eliminating a conjunct, similar to simplbi2 . (Contributed by Alan Sare, 22-Jul-2012) (Proof shortened by Wolf Lammen, 10-Nov-2012)

Ref Expression
Hypothesis simplbi2com.1
|- ( ph <-> ( ps /\ ch ) )
Assertion simplbi2com
|- ( ch -> ( ps -> ph ) )

Proof

Step Hyp Ref Expression
1 simplbi2com.1
 |-  ( ph <-> ( ps /\ ch ) )
2 1 simplbi2
 |-  ( ps -> ( ch -> ph ) )
3 2 com12
 |-  ( ch -> ( ps -> ph ) )