Description: Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Wolf Lammen, 26-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | simplbiim.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
simplbiim.2 | |- ( ch -> th ) |
||
Assertion | simplbiim | |- ( ph -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbiim.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
2 | simplbiim.2 | |- ( ch -> th ) |
|
3 | 1 | simprbi | |- ( ph -> ch ) |
4 | 3 2 | syl | |- ( ph -> th ) |