Metamath Proof Explorer


Theorem simplbiim

Description: Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Wolf Lammen, 26-Mar-2022)

Ref Expression
Hypotheses simplbiim.1
|- ( ph <-> ( ps /\ ch ) )
simplbiim.2
|- ( ch -> th )
Assertion simplbiim
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 simplbiim.1
 |-  ( ph <-> ( ps /\ ch ) )
2 simplbiim.2
 |-  ( ch -> th )
3 1 simprbi
 |-  ( ph -> ch )
4 3 2 syl
 |-  ( ph -> th )