Metamath Proof Explorer


Theorem simplld

Description: Deduction form of simpll , eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis simplld.1
|- ( ph -> ( ( ps /\ ch ) /\ th ) )
Assertion simplld
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 simplld.1
 |-  ( ph -> ( ( ps /\ ch ) /\ th ) )
2 1 simpld
 |-  ( ph -> ( ps /\ ch ) )
3 2 simpld
 |-  ( ph -> ps )