Metamath Proof Explorer


Theorem simplr

Description: Simplification of a conjunction. (Contributed by NM, 20-Mar-2007)

Ref Expression
Assertion simplr
|- ( ( ( ph /\ ps ) /\ ch ) -> ps )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ps -> ps )
2 1 ad2antlr
 |-  ( ( ( ph /\ ps ) /\ ch ) -> ps )