Metamath Proof Explorer


Theorem simplrd

Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis simplrd.1
|- ( ph -> ( ( ps /\ ch ) /\ th ) )
Assertion simplrd
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 simplrd.1
 |-  ( ph -> ( ( ps /\ ch ) /\ th ) )
2 1 simpld
 |-  ( ph -> ( ps /\ ch ) )
3 2 simprd
 |-  ( ph -> ch )