Metamath Proof Explorer


Theorem simprlr

Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009)

Ref Expression
Assertion simprlr
|- ( ( ph /\ ( ( ps /\ ch ) /\ th ) ) -> ch )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( ps /\ ch ) -> ch )
2 1 ad2antrl
 |-  ( ( ph /\ ( ( ps /\ ch ) /\ th ) ) -> ch )