Metamath Proof Explorer


Theorem simprr

Description: Simplification of a conjunction. (Contributed by NM, 21-Mar-2007)

Ref Expression
Assertion simprr
|- ( ( ph /\ ( ps /\ ch ) ) -> ch )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ch -> ch )
2 1 ad2antll
 |-  ( ( ph /\ ( ps /\ ch ) ) -> ch )