| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xr |  |-  0 e. RR* | 
						
							| 2 |  | 1re |  |-  1 e. RR | 
						
							| 3 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) | 
						
							| 4 | 1 2 3 | mp2an |  |-  ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) | 
						
							| 5 | 4 | simp1bi |  |-  ( A e. ( 0 (,] 1 ) -> A e. RR ) | 
						
							| 6 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 7 |  | reexpcl |  |-  ( ( A e. RR /\ 3 e. NN0 ) -> ( A ^ 3 ) e. RR ) | 
						
							| 8 | 5 6 7 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) e. RR ) | 
						
							| 9 |  | 6nn |  |-  6 e. NN | 
						
							| 10 |  | nndivre |  |-  ( ( ( A ^ 3 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 3 ) / 6 ) e. RR ) | 
						
							| 11 | 8 9 10 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 6 ) e. RR ) | 
						
							| 12 | 5 11 | resubcld |  |-  ( A e. ( 0 (,] 1 ) -> ( A - ( ( A ^ 3 ) / 6 ) ) e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( A - ( ( A ^ 3 ) / 6 ) ) e. CC ) | 
						
							| 14 |  | ax-icn |  |-  _i e. CC | 
						
							| 15 | 5 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> A e. CC ) | 
						
							| 16 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 17 | 14 15 16 | sylancr |  |-  ( A e. ( 0 (,] 1 ) -> ( _i x. A ) e. CC ) | 
						
							| 18 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 19 |  | eqid |  |-  ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 20 | 19 | eftlcl |  |-  ( ( ( _i x. A ) e. CC /\ 4 e. NN0 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) | 
						
							| 21 | 17 18 20 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) | 
						
							| 22 | 21 | imcld |  |-  ( A e. ( 0 (,] 1 ) -> ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) | 
						
							| 23 | 22 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. CC ) | 
						
							| 24 | 19 | resin4p |  |-  ( A e. RR -> ( sin ` A ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) | 
						
							| 25 | 5 24 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( sin ` A ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) | 
						
							| 26 | 13 23 25 | mvrladdd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) = ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) = ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) | 
						
							| 28 | 23 | abscld |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) e. RR ) | 
						
							| 29 | 21 | abscld |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) | 
						
							| 30 |  | absimle |  |-  ( sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) | 
						
							| 31 | 21 30 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) | 
						
							| 32 |  | reexpcl |  |-  ( ( A e. RR /\ 4 e. NN0 ) -> ( A ^ 4 ) e. RR ) | 
						
							| 33 | 5 18 32 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR ) | 
						
							| 34 |  | nndivre |  |-  ( ( ( A ^ 4 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 4 ) / 6 ) e. RR ) | 
						
							| 35 | 33 9 34 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) e. RR ) | 
						
							| 36 | 19 | ef01bndlem |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 4 ) / 6 ) ) | 
						
							| 37 | 6 | a1i |  |-  ( A e. ( 0 (,] 1 ) -> 3 e. NN0 ) | 
						
							| 38 |  | 4z |  |-  4 e. ZZ | 
						
							| 39 |  | 3re |  |-  3 e. RR | 
						
							| 40 |  | 4re |  |-  4 e. RR | 
						
							| 41 |  | 3lt4 |  |-  3 < 4 | 
						
							| 42 | 39 40 41 | ltleii |  |-  3 <_ 4 | 
						
							| 43 |  | 3z |  |-  3 e. ZZ | 
						
							| 44 | 43 | eluz1i |  |-  ( 4 e. ( ZZ>= ` 3 ) <-> ( 4 e. ZZ /\ 3 <_ 4 ) ) | 
						
							| 45 | 38 42 44 | mpbir2an |  |-  4 e. ( ZZ>= ` 3 ) | 
						
							| 46 | 45 | a1i |  |-  ( A e. ( 0 (,] 1 ) -> 4 e. ( ZZ>= ` 3 ) ) | 
						
							| 47 | 4 | simp2bi |  |-  ( A e. ( 0 (,] 1 ) -> 0 < A ) | 
						
							| 48 |  | 0re |  |-  0 e. RR | 
						
							| 49 |  | ltle |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 50 | 48 5 49 | sylancr |  |-  ( A e. ( 0 (,] 1 ) -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 51 | 47 50 | mpd |  |-  ( A e. ( 0 (,] 1 ) -> 0 <_ A ) | 
						
							| 52 | 4 | simp3bi |  |-  ( A e. ( 0 (,] 1 ) -> A <_ 1 ) | 
						
							| 53 | 5 37 46 51 52 | leexp2rd |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) <_ ( A ^ 3 ) ) | 
						
							| 54 |  | 6re |  |-  6 e. RR | 
						
							| 55 | 54 | a1i |  |-  ( A e. ( 0 (,] 1 ) -> 6 e. RR ) | 
						
							| 56 |  | 6pos |  |-  0 < 6 | 
						
							| 57 | 56 | a1i |  |-  ( A e. ( 0 (,] 1 ) -> 0 < 6 ) | 
						
							| 58 |  | lediv1 |  |-  ( ( ( A ^ 4 ) e. RR /\ ( A ^ 3 ) e. RR /\ ( 6 e. RR /\ 0 < 6 ) ) -> ( ( A ^ 4 ) <_ ( A ^ 3 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 3 ) / 6 ) ) ) | 
						
							| 59 | 33 8 55 57 58 | syl112anc |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) <_ ( A ^ 3 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 3 ) / 6 ) ) ) | 
						
							| 60 | 53 59 | mpbid |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 3 ) / 6 ) ) | 
						
							| 61 | 29 35 11 36 60 | ltletrd |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 3 ) / 6 ) ) | 
						
							| 62 | 28 29 11 31 61 | lelttrd |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) < ( ( A ^ 3 ) / 6 ) ) | 
						
							| 63 | 27 62 | eqbrtrd |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) < ( ( A ^ 3 ) / 6 ) ) | 
						
							| 64 | 5 | resincld |  |-  ( A e. ( 0 (,] 1 ) -> ( sin ` A ) e. RR ) | 
						
							| 65 | 64 12 11 | absdifltd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) < ( ( A ^ 3 ) / 6 ) <-> ( ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) < ( sin ` A ) /\ ( sin ` A ) < ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) ) ) ) | 
						
							| 66 | 11 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 6 ) e. CC ) | 
						
							| 67 | 15 66 66 | subsub4d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) ) ) | 
						
							| 68 | 8 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) e. CC ) | 
						
							| 69 |  | 3cn |  |-  3 e. CC | 
						
							| 70 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 71 | 69 70 | pm3.2i |  |-  ( 3 e. CC /\ 3 =/= 0 ) | 
						
							| 72 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 73 |  | divdiv1 |  |-  ( ( ( A ^ 3 ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( A ^ 3 ) / 3 ) / 2 ) = ( ( A ^ 3 ) / ( 3 x. 2 ) ) ) | 
						
							| 74 | 71 72 73 | mp3an23 |  |-  ( ( A ^ 3 ) e. CC -> ( ( ( A ^ 3 ) / 3 ) / 2 ) = ( ( A ^ 3 ) / ( 3 x. 2 ) ) ) | 
						
							| 75 | 68 74 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 3 ) / 3 ) / 2 ) = ( ( A ^ 3 ) / ( 3 x. 2 ) ) ) | 
						
							| 76 |  | 3t2e6 |  |-  ( 3 x. 2 ) = 6 | 
						
							| 77 | 76 | oveq2i |  |-  ( ( A ^ 3 ) / ( 3 x. 2 ) ) = ( ( A ^ 3 ) / 6 ) | 
						
							| 78 | 75 77 | eqtr2di |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 6 ) = ( ( ( A ^ 3 ) / 3 ) / 2 ) ) | 
						
							| 79 | 78 78 | oveq12d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) = ( ( ( ( A ^ 3 ) / 3 ) / 2 ) + ( ( ( A ^ 3 ) / 3 ) / 2 ) ) ) | 
						
							| 80 |  | 3nn |  |-  3 e. NN | 
						
							| 81 |  | nndivre |  |-  ( ( ( A ^ 3 ) e. RR /\ 3 e. NN ) -> ( ( A ^ 3 ) / 3 ) e. RR ) | 
						
							| 82 | 8 80 81 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) e. RR ) | 
						
							| 83 | 82 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) e. CC ) | 
						
							| 84 | 83 | 2halvesd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( ( A ^ 3 ) / 3 ) / 2 ) + ( ( ( A ^ 3 ) / 3 ) / 2 ) ) = ( ( A ^ 3 ) / 3 ) ) | 
						
							| 85 | 79 84 | eqtrd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) = ( ( A ^ 3 ) / 3 ) ) | 
						
							| 86 | 85 | oveq2d |  |-  ( A e. ( 0 (,] 1 ) -> ( A - ( ( ( A ^ 3 ) / 6 ) + ( ( A ^ 3 ) / 6 ) ) ) = ( A - ( ( A ^ 3 ) / 3 ) ) ) | 
						
							| 87 | 67 86 | eqtrd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( A ^ 3 ) / 3 ) ) ) | 
						
							| 88 | 87 | breq1d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) < ( sin ` A ) <-> ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) ) ) | 
						
							| 89 | 15 66 | npcand |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) = A ) | 
						
							| 90 | 89 | breq2d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( sin ` A ) < ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) <-> ( sin ` A ) < A ) ) | 
						
							| 91 | 88 90 | anbi12d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( ( A - ( ( A ^ 3 ) / 6 ) ) - ( ( A ^ 3 ) / 6 ) ) < ( sin ` A ) /\ ( sin ` A ) < ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( ( A ^ 3 ) / 6 ) ) ) <-> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) ) | 
						
							| 92 | 65 91 | bitrd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( sin ` A ) - ( A - ( ( A ^ 3 ) / 6 ) ) ) ) < ( ( A ^ 3 ) / 6 ) <-> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) ) | 
						
							| 93 | 63 92 | mpbid |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) |