Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|- 0 e. RR* |
2 |
|
1re |
|- 1 e. RR |
3 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
4 |
1 2 3
|
mp2an |
|- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
5 |
4
|
simp1bi |
|- ( A e. ( 0 (,] 1 ) -> A e. RR ) |
6 |
|
3nn0 |
|- 3 e. NN0 |
7 |
|
reexpcl |
|- ( ( A e. RR /\ 3 e. NN0 ) -> ( A ^ 3 ) e. RR ) |
8 |
5 6 7
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) e. RR ) |
9 |
|
3re |
|- 3 e. RR |
10 |
|
3ne0 |
|- 3 =/= 0 |
11 |
|
redivcl |
|- ( ( ( A ^ 3 ) e. RR /\ 3 e. RR /\ 3 =/= 0 ) -> ( ( A ^ 3 ) / 3 ) e. RR ) |
12 |
9 10 11
|
mp3an23 |
|- ( ( A ^ 3 ) e. RR -> ( ( A ^ 3 ) / 3 ) e. RR ) |
13 |
8 12
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) e. RR ) |
14 |
|
3z |
|- 3 e. ZZ |
15 |
|
expgt0 |
|- ( ( A e. RR /\ 3 e. ZZ /\ 0 < A ) -> 0 < ( A ^ 3 ) ) |
16 |
14 15
|
mp3an2 |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( A ^ 3 ) ) |
17 |
16
|
3adant3 |
|- ( ( A e. RR /\ 0 < A /\ A <_ 1 ) -> 0 < ( A ^ 3 ) ) |
18 |
4 17
|
sylbi |
|- ( A e. ( 0 (,] 1 ) -> 0 < ( A ^ 3 ) ) |
19 |
|
0lt1 |
|- 0 < 1 |
20 |
2 19
|
pm3.2i |
|- ( 1 e. RR /\ 0 < 1 ) |
21 |
|
3pos |
|- 0 < 3 |
22 |
9 21
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
23 |
|
1lt3 |
|- 1 < 3 |
24 |
|
ltdiv2 |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( 3 e. RR /\ 0 < 3 ) /\ ( ( A ^ 3 ) e. RR /\ 0 < ( A ^ 3 ) ) ) -> ( 1 < 3 <-> ( ( A ^ 3 ) / 3 ) < ( ( A ^ 3 ) / 1 ) ) ) |
25 |
23 24
|
mpbii |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( 3 e. RR /\ 0 < 3 ) /\ ( ( A ^ 3 ) e. RR /\ 0 < ( A ^ 3 ) ) ) -> ( ( A ^ 3 ) / 3 ) < ( ( A ^ 3 ) / 1 ) ) |
26 |
20 22 25
|
mp3an12 |
|- ( ( ( A ^ 3 ) e. RR /\ 0 < ( A ^ 3 ) ) -> ( ( A ^ 3 ) / 3 ) < ( ( A ^ 3 ) / 1 ) ) |
27 |
8 18 26
|
syl2anc |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) < ( ( A ^ 3 ) / 1 ) ) |
28 |
8
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) e. CC ) |
29 |
28
|
div1d |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 1 ) = ( A ^ 3 ) ) |
30 |
27 29
|
breqtrd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) < ( A ^ 3 ) ) |
31 |
|
1nn0 |
|- 1 e. NN0 |
32 |
31
|
a1i |
|- ( A e. ( 0 (,] 1 ) -> 1 e. NN0 ) |
33 |
|
1le3 |
|- 1 <_ 3 |
34 |
|
1z |
|- 1 e. ZZ |
35 |
34
|
eluz1i |
|- ( 3 e. ( ZZ>= ` 1 ) <-> ( 3 e. ZZ /\ 1 <_ 3 ) ) |
36 |
14 33 35
|
mpbir2an |
|- 3 e. ( ZZ>= ` 1 ) |
37 |
36
|
a1i |
|- ( A e. ( 0 (,] 1 ) -> 3 e. ( ZZ>= ` 1 ) ) |
38 |
4
|
simp2bi |
|- ( A e. ( 0 (,] 1 ) -> 0 < A ) |
39 |
|
0re |
|- 0 e. RR |
40 |
|
ltle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
41 |
39 5 40
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( 0 < A -> 0 <_ A ) ) |
42 |
38 41
|
mpd |
|- ( A e. ( 0 (,] 1 ) -> 0 <_ A ) |
43 |
4
|
simp3bi |
|- ( A e. ( 0 (,] 1 ) -> A <_ 1 ) |
44 |
5 32 37 42 43
|
leexp2rd |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) <_ ( A ^ 1 ) ) |
45 |
5
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> A e. CC ) |
46 |
45
|
exp1d |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 1 ) = A ) |
47 |
44 46
|
breqtrd |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) <_ A ) |
48 |
13 8 5 30 47
|
ltletrd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) < A ) |
49 |
13 5
|
posdifd |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 3 ) / 3 ) < A <-> 0 < ( A - ( ( A ^ 3 ) / 3 ) ) ) ) |
50 |
48 49
|
mpbid |
|- ( A e. ( 0 (,] 1 ) -> 0 < ( A - ( ( A ^ 3 ) / 3 ) ) ) |
51 |
|
sin01bnd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) |
52 |
51
|
simpld |
|- ( A e. ( 0 (,] 1 ) -> ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) ) |
53 |
5 13
|
resubcld |
|- ( A e. ( 0 (,] 1 ) -> ( A - ( ( A ^ 3 ) / 3 ) ) e. RR ) |
54 |
5
|
resincld |
|- ( A e. ( 0 (,] 1 ) -> ( sin ` A ) e. RR ) |
55 |
|
lttr |
|- ( ( 0 e. RR /\ ( A - ( ( A ^ 3 ) / 3 ) ) e. RR /\ ( sin ` A ) e. RR ) -> ( ( 0 < ( A - ( ( A ^ 3 ) / 3 ) ) /\ ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) ) -> 0 < ( sin ` A ) ) ) |
56 |
39 53 54 55
|
mp3an2i |
|- ( A e. ( 0 (,] 1 ) -> ( ( 0 < ( A - ( ( A ^ 3 ) / 3 ) ) /\ ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) ) -> 0 < ( sin ` A ) ) ) |
57 |
50 52 56
|
mp2and |
|- ( A e. ( 0 (,] 1 ) -> 0 < ( sin ` A ) ) |