Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|- 0 e. RR* |
2 |
|
2re |
|- 2 e. RR |
3 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 2 e. RR ) -> ( A e. ( 0 (,] 2 ) <-> ( A e. RR /\ 0 < A /\ A <_ 2 ) ) ) |
4 |
1 2 3
|
mp2an |
|- ( A e. ( 0 (,] 2 ) <-> ( A e. RR /\ 0 < A /\ A <_ 2 ) ) |
5 |
|
rehalfcl |
|- ( A e. RR -> ( A / 2 ) e. RR ) |
6 |
5
|
3ad2ant1 |
|- ( ( A e. RR /\ 0 < A /\ A <_ 2 ) -> ( A / 2 ) e. RR ) |
7 |
4 6
|
sylbi |
|- ( A e. ( 0 (,] 2 ) -> ( A / 2 ) e. RR ) |
8 |
|
resincl |
|- ( ( A / 2 ) e. RR -> ( sin ` ( A / 2 ) ) e. RR ) |
9 |
|
recoscl |
|- ( ( A / 2 ) e. RR -> ( cos ` ( A / 2 ) ) e. RR ) |
10 |
8 9
|
remulcld |
|- ( ( A / 2 ) e. RR -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) |
11 |
7 10
|
syl |
|- ( A e. ( 0 (,] 2 ) -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) |
12 |
|
2pos |
|- 0 < 2 |
13 |
|
divgt0 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 < ( A / 2 ) ) |
14 |
2 12 13
|
mpanr12 |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( A / 2 ) ) |
15 |
14
|
3adant3 |
|- ( ( A e. RR /\ 0 < A /\ A <_ 2 ) -> 0 < ( A / 2 ) ) |
16 |
2 12
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
17 |
|
lediv1 |
|- ( ( A e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A <_ 2 <-> ( A / 2 ) <_ ( 2 / 2 ) ) ) |
18 |
2 16 17
|
mp3an23 |
|- ( A e. RR -> ( A <_ 2 <-> ( A / 2 ) <_ ( 2 / 2 ) ) ) |
19 |
18
|
biimpa |
|- ( ( A e. RR /\ A <_ 2 ) -> ( A / 2 ) <_ ( 2 / 2 ) ) |
20 |
|
2div2e1 |
|- ( 2 / 2 ) = 1 |
21 |
19 20
|
breqtrdi |
|- ( ( A e. RR /\ A <_ 2 ) -> ( A / 2 ) <_ 1 ) |
22 |
21
|
3adant2 |
|- ( ( A e. RR /\ 0 < A /\ A <_ 2 ) -> ( A / 2 ) <_ 1 ) |
23 |
6 15 22
|
3jca |
|- ( ( A e. RR /\ 0 < A /\ A <_ 2 ) -> ( ( A / 2 ) e. RR /\ 0 < ( A / 2 ) /\ ( A / 2 ) <_ 1 ) ) |
24 |
|
1re |
|- 1 e. RR |
25 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( ( A / 2 ) e. ( 0 (,] 1 ) <-> ( ( A / 2 ) e. RR /\ 0 < ( A / 2 ) /\ ( A / 2 ) <_ 1 ) ) ) |
26 |
1 24 25
|
mp2an |
|- ( ( A / 2 ) e. ( 0 (,] 1 ) <-> ( ( A / 2 ) e. RR /\ 0 < ( A / 2 ) /\ ( A / 2 ) <_ 1 ) ) |
27 |
23 4 26
|
3imtr4i |
|- ( A e. ( 0 (,] 2 ) -> ( A / 2 ) e. ( 0 (,] 1 ) ) |
28 |
|
sin01gt0 |
|- ( ( A / 2 ) e. ( 0 (,] 1 ) -> 0 < ( sin ` ( A / 2 ) ) ) |
29 |
27 28
|
syl |
|- ( A e. ( 0 (,] 2 ) -> 0 < ( sin ` ( A / 2 ) ) ) |
30 |
|
cos01gt0 |
|- ( ( A / 2 ) e. ( 0 (,] 1 ) -> 0 < ( cos ` ( A / 2 ) ) ) |
31 |
27 30
|
syl |
|- ( A e. ( 0 (,] 2 ) -> 0 < ( cos ` ( A / 2 ) ) ) |
32 |
|
axmulgt0 |
|- ( ( ( sin ` ( A / 2 ) ) e. RR /\ ( cos ` ( A / 2 ) ) e. RR ) -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
33 |
8 9 32
|
syl2anc |
|- ( ( A / 2 ) e. RR -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
34 |
7 33
|
syl |
|- ( A e. ( 0 (,] 2 ) -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
35 |
29 31 34
|
mp2and |
|- ( A e. ( 0 (,] 2 ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) |
36 |
|
axmulgt0 |
|- ( ( 2 e. RR /\ ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) -> ( ( 0 < 2 /\ 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
37 |
2 36
|
mpan |
|- ( ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR -> ( ( 0 < 2 /\ 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
38 |
12 37
|
mpani |
|- ( ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR -> ( 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
39 |
11 35 38
|
sylc |
|- ( A e. ( 0 (,] 2 ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
40 |
7
|
recnd |
|- ( A e. ( 0 (,] 2 ) -> ( A / 2 ) e. CC ) |
41 |
|
sin2t |
|- ( ( A / 2 ) e. CC -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
42 |
40 41
|
syl |
|- ( A e. ( 0 (,] 2 ) -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
43 |
39 42
|
breqtrrd |
|- ( A e. ( 0 (,] 2 ) -> 0 < ( sin ` ( 2 x. ( A / 2 ) ) ) ) |
44 |
4
|
simp1bi |
|- ( A e. ( 0 (,] 2 ) -> A e. RR ) |
45 |
44
|
recnd |
|- ( A e. ( 0 (,] 2 ) -> A e. CC ) |
46 |
|
2cn |
|- 2 e. CC |
47 |
|
2ne0 |
|- 2 =/= 0 |
48 |
|
divcan2 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) |
49 |
46 47 48
|
mp3an23 |
|- ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) |
50 |
45 49
|
syl |
|- ( A e. ( 0 (,] 2 ) -> ( 2 x. ( A / 2 ) ) = A ) |
51 |
50
|
fveq2d |
|- ( A e. ( 0 (,] 2 ) -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( sin ` A ) ) |
52 |
43 51
|
breqtrd |
|- ( A e. ( 0 (,] 2 ) -> 0 < ( sin ` A ) ) |