| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 2 |
|
2cn |
|- 2 e. CC |
| 3 |
|
picn |
|- _pi e. CC |
| 4 |
2 3
|
mulcli |
|- ( 2 x. _pi ) e. CC |
| 5 |
|
mulcl |
|- ( ( K e. CC /\ ( 2 x. _pi ) e. CC ) -> ( K x. ( 2 x. _pi ) ) e. CC ) |
| 6 |
1 4 5
|
sylancl |
|- ( K e. ZZ -> ( K x. ( 2 x. _pi ) ) e. CC ) |
| 7 |
6
|
addlidd |
|- ( K e. ZZ -> ( 0 + ( K x. ( 2 x. _pi ) ) ) = ( K x. ( 2 x. _pi ) ) ) |
| 8 |
7
|
fveq2d |
|- ( K e. ZZ -> ( sin ` ( 0 + ( K x. ( 2 x. _pi ) ) ) ) = ( sin ` ( K x. ( 2 x. _pi ) ) ) ) |
| 9 |
|
0cn |
|- 0 e. CC |
| 10 |
|
sinper |
|- ( ( 0 e. CC /\ K e. ZZ ) -> ( sin ` ( 0 + ( K x. ( 2 x. _pi ) ) ) ) = ( sin ` 0 ) ) |
| 11 |
9 10
|
mpan |
|- ( K e. ZZ -> ( sin ` ( 0 + ( K x. ( 2 x. _pi ) ) ) ) = ( sin ` 0 ) ) |
| 12 |
|
sin0 |
|- ( sin ` 0 ) = 0 |
| 13 |
11 12
|
eqtrdi |
|- ( K e. ZZ -> ( sin ` ( 0 + ( K x. ( 2 x. _pi ) ) ) ) = 0 ) |
| 14 |
8 13
|
eqtr3d |
|- ( K e. ZZ -> ( sin ` ( K x. ( 2 x. _pi ) ) ) = 0 ) |