Step |
Hyp |
Ref |
Expression |
1 |
|
2times |
|- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
2 |
1
|
fveq2d |
|- ( A e. CC -> ( sin ` ( 2 x. A ) ) = ( sin ` ( A + A ) ) ) |
3 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
4 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
5 |
3 4
|
mulcomd |
|- ( A e. CC -> ( ( cos ` A ) x. ( sin ` A ) ) = ( ( sin ` A ) x. ( cos ` A ) ) ) |
6 |
5
|
oveq2d |
|- ( A e. CC -> ( ( ( sin ` A ) x. ( cos ` A ) ) + ( ( cos ` A ) x. ( sin ` A ) ) ) = ( ( ( sin ` A ) x. ( cos ` A ) ) + ( ( sin ` A ) x. ( cos ` A ) ) ) ) |
7 |
|
sinadd |
|- ( ( A e. CC /\ A e. CC ) -> ( sin ` ( A + A ) ) = ( ( ( sin ` A ) x. ( cos ` A ) ) + ( ( cos ` A ) x. ( sin ` A ) ) ) ) |
8 |
7
|
anidms |
|- ( A e. CC -> ( sin ` ( A + A ) ) = ( ( ( sin ` A ) x. ( cos ` A ) ) + ( ( cos ` A ) x. ( sin ` A ) ) ) ) |
9 |
4 3
|
mulcld |
|- ( A e. CC -> ( ( sin ` A ) x. ( cos ` A ) ) e. CC ) |
10 |
9
|
2timesd |
|- ( A e. CC -> ( 2 x. ( ( sin ` A ) x. ( cos ` A ) ) ) = ( ( ( sin ` A ) x. ( cos ` A ) ) + ( ( sin ` A ) x. ( cos ` A ) ) ) ) |
11 |
6 8 10
|
3eqtr4d |
|- ( A e. CC -> ( sin ` ( A + A ) ) = ( 2 x. ( ( sin ` A ) x. ( cos ` A ) ) ) ) |
12 |
2 11
|
eqtrd |
|- ( A e. CC -> ( sin ` ( 2 x. A ) ) = ( 2 x. ( ( sin ` A ) x. ( cos ` A ) ) ) ) |