| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 2 |
1
|
fveq2i |
|- ( sin ` ( 2 x. 2 ) ) = ( sin ` 4 ) |
| 3 |
|
2cn |
|- 2 e. CC |
| 4 |
|
sin2t |
|- ( 2 e. CC -> ( sin ` ( 2 x. 2 ) ) = ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( sin ` ( 2 x. 2 ) ) = ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) |
| 6 |
2 5
|
eqtr3i |
|- ( sin ` 4 ) = ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) |
| 7 |
|
sincos2sgn |
|- ( 0 < ( sin ` 2 ) /\ ( cos ` 2 ) < 0 ) |
| 8 |
7
|
simpri |
|- ( cos ` 2 ) < 0 |
| 9 |
|
2re |
|- 2 e. RR |
| 10 |
|
recoscl |
|- ( 2 e. RR -> ( cos ` 2 ) e. RR ) |
| 11 |
9 10
|
ax-mp |
|- ( cos ` 2 ) e. RR |
| 12 |
|
0re |
|- 0 e. RR |
| 13 |
|
resincl |
|- ( 2 e. RR -> ( sin ` 2 ) e. RR ) |
| 14 |
9 13
|
ax-mp |
|- ( sin ` 2 ) e. RR |
| 15 |
7
|
simpli |
|- 0 < ( sin ` 2 ) |
| 16 |
14 15
|
pm3.2i |
|- ( ( sin ` 2 ) e. RR /\ 0 < ( sin ` 2 ) ) |
| 17 |
|
ltmul2 |
|- ( ( ( cos ` 2 ) e. RR /\ 0 e. RR /\ ( ( sin ` 2 ) e. RR /\ 0 < ( sin ` 2 ) ) ) -> ( ( cos ` 2 ) < 0 <-> ( ( sin ` 2 ) x. ( cos ` 2 ) ) < ( ( sin ` 2 ) x. 0 ) ) ) |
| 18 |
11 12 16 17
|
mp3an |
|- ( ( cos ` 2 ) < 0 <-> ( ( sin ` 2 ) x. ( cos ` 2 ) ) < ( ( sin ` 2 ) x. 0 ) ) |
| 19 |
8 18
|
mpbi |
|- ( ( sin ` 2 ) x. ( cos ` 2 ) ) < ( ( sin ` 2 ) x. 0 ) |
| 20 |
14
|
recni |
|- ( sin ` 2 ) e. CC |
| 21 |
20
|
mul01i |
|- ( ( sin ` 2 ) x. 0 ) = 0 |
| 22 |
19 21
|
breqtri |
|- ( ( sin ` 2 ) x. ( cos ` 2 ) ) < 0 |
| 23 |
14 11
|
remulcli |
|- ( ( sin ` 2 ) x. ( cos ` 2 ) ) e. RR |
| 24 |
|
2pos |
|- 0 < 2 |
| 25 |
9 24
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 26 |
|
ltmul2 |
|- ( ( ( ( sin ` 2 ) x. ( cos ` 2 ) ) e. RR /\ 0 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( sin ` 2 ) x. ( cos ` 2 ) ) < 0 <-> ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) < ( 2 x. 0 ) ) ) |
| 27 |
23 12 25 26
|
mp3an |
|- ( ( ( sin ` 2 ) x. ( cos ` 2 ) ) < 0 <-> ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) < ( 2 x. 0 ) ) |
| 28 |
22 27
|
mpbi |
|- ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) < ( 2 x. 0 ) |
| 29 |
3
|
mul01i |
|- ( 2 x. 0 ) = 0 |
| 30 |
28 29
|
breqtri |
|- ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) < 0 |
| 31 |
6 30
|
eqbrtri |
|- ( sin ` 4 ) < 0 |